
The tube.zero Deployment Support System
(Demo Abstract)

Andreas Reinhardt∗, Parag S. Mogre†, Paul Baumann∗, Johannes Schmitt∗, Ralf Steinmetz∗
∗Multimedia Communications Lab, Technische Universität Darmstadt

Rundeturmstr. 10, 64283 Darmstadt, Germany
{andreas.reinhardt, paul.baumann, johannes.schmitt, ralf.steinmetz}@kom.tu-darmstadt.de

†Siemens AG, Corporate Technology T DE IT 2
Otto-Hahn-Ring 6, 81739 München, Germany

parag.mogre@ieee.org

Abstract—Practical experimentation in wireless sensor net-
works is generally challenging. The experimenter needs to install
firmware images on each node individually, manually deploy and
collect the devices, and retrieve debugging data logged on the
nodes. To simplify experimentation, testbeds (fixed sensor net-
work deployments) have become popular. Testbed management
systems are a necessity to efficiently use the testbed resources. In
this paper, we present the tube.zero deployment support system.
Tube.zero supports the visualization of sensor node location and
node connectivity. It also allows users to easily instantiate new
experiments on any subset of nodes in the testbed and with
the required network topology. Its user management permits
temporal and spatial multiplexing of nodes for different jobs.
On the user interface, experimenters can monitor the execution
of their applications in real time and transmit control commands
to each node. Tube.zero caters for the automatic distribution and
installation of new firmware images as well as the retrieval of
consolidated log files after experiments have completed.

I. INTRODUCTION

As in-situ debugging capabilities of current wireless sensor
nodes are typically confined to blinking LEDs, the real-
world validation of simulation experiments is a non-trivial
task. The fixed deployment of sensor networks in testbeds
is thus a viable approach to maintain convenient access to
the devices while exposing them to real-world characteristics.
The deployed nodes are generally interfaced to a secondary
network solely used for debugging purposes. This secondary
channel can be realized over wired [1] or wireless channels [2].

To run an experiment on a testbed, the developer is typically
confronted with the need for manual interaction, e.g. selecting
nodes without previous knowledge of already running or
scheduled jobs, dealing with the connectivity between the

USB Hub

SunSPOT

Gumstix
TelosB

WLAN
Blue-
tooth

Web-
cam

Fig. 1. Simplified structure and photo of a Tubicle node

Tubicle 
Connection Scheduler Database 

Connection

Controller

SSH

User Logon / Security Proxy

SQL

tube.zero Server

User Interface

tube.zero Client

RMI

Fig. 2. Architecture of tube.zero

nodes, and handling the simultaneous distribution of firmware
to the nodes. A reliable and intuitive deployment support
system is hence necessary to increase the efficiency in resource
sharing. Especially when many experimenters use the testbed,
the need for coordinated temporal and spatial multiplexing of
user experiments becomes obvious.

We have presented our TWiNS.KOM testbed in [3], which
is currently composed of 20 Tubicle nodes (see Fig. 1 for
a system overview). Tubicles provide three sensor platforms
(Gumstix, SunSPOT, TelosB), which can be individually pro-
grammed. The presented tube.zero deployment support system
has been developed to coordinate experiments on the testbed.

II. THE TUBE.ZERO SYSTEM

Tube.zero is based on the modular client/server architec-
ture shown in Fig. 2. The tube.zero core is executed on a
server, maintaining a consistent job schedule as well as the
connections to all sensor nodes and the database. The client
devices only execute the management interface and present the
graphical user interface to the user. More details are provided
at http://www.kom.tu-darmstadt.de/~reinhard/tubezero.

A. Node Status

All nodes are visualized on a graphical user interface, where
three colored circles indicate the availability of each of the
integrated platforms on the Tubicle, as shown in Fig. 3(a).
While green signals an available device, a purple colored circle
indicates the execution of a job on the platform. Nodes marked
in red have not responded to connection attempts and are thus
considered unavailable.



Fig. 4. The tube.zero user interface shows a listing of done, pending, and running jobs

B. Task Scheduling

To create a new experiment, the user needs to select the
number of nodes required and the experiment duration (rang-
ing from five minutes to 24 hours). Based on this information,
the task scheduler allocates the required number of nodes
at the earliest time available, taking already scheduled jobs
into consideration. An initial experiment topology based on
node availabilities is suggested by the scheduler, however
a manual reconfiguration to the user’s preferred topology is
possible. The user can optionally also shift the execution of
the experiment to a later time, such as to conduct experiments
during night time, where less cross traffic is present. Periodic
jobs can also be created, and already finished jobs can be re-
run with identical or modified properties easily. The scheduler
adds all jobs into the job list shown in Fig. 4, which provides
an overview of job details like owner and status.

The tube.zero system is provided with an option to upload
a pre-compiled firmware image with connectivity assessment
functionality on all nodes. Information on the node connec-
tivity is then shown during job creation, depicted in Fig. 3(b).
The integrated connectivity analysis is a helpful tool to avoid
experimenting with disconnected networks, and provides the
option to schedule this job periodically to update the informa-
tions in a given time interval.

C. Task Deployment

Before any new experiment can be deployed, the preceding
job is stopped. All resulting log files are transferred to the
server, where they are consolidated and stored in the database,
kept available for later retrieval. Once the user has created a

(a) Status View (b) Connectivity View

Fig. 3. Node status and connectivity view

new task, the deployment process is triggered at the desired
starting time. The new firmware files are then uploaded to
the corresponding platforms of each selected sensor node
(Gumstix, SunSPOT, TelosB, or any combination of these). On
platforms without a dedicated job allocation, a radio logger
application is being uploaded to avoid interference through
unexpected packet transmissions. It needs to be remarked that
all unselected nodes remain available for other experiments.

Firmware images are compressed and uploaded to the nodes
in a bulk transmission, where they are then decompressed
locally and installed on the attached platform. As TelosB
components have no fixed hardware address for their radio
transceivers, the radio address is changed in the firmware im-
age according to the node identifier to avoid address collisions.
The firmware upload process is logged to allow the developer
to determine if any problems have occurred.

D. Node Control and Logging

To exclude misconfigured or misbehaving nodes from run-
ning experiments, tube.zero offers dedicated functions to se-
lectively disable nodes in running jobs. Similarly, experiments
running erroneous firmware images can be cancelled before
their scheduled termination through the user interface.

Besides direct interaction with the nodes, tube.zero offers
two logging components. The process of deploying firmware
images on the nodes is logged into a file to identify errors at
this stage of the experiment. All data directly output by the
nodes during the experiment can be followed in real time by
opening a dedicated log connection through the user interface.
Alternatively, all log files can be retrieved from the database
after the experiment has terminated.

III. DEMONSTRATION SETUP AND REQUIREMENTS

The tube.zero system has been designed to manage a
testbed of Tubicle sensor nodes, and currently controls the
TWiNS.KOM testbed with 20 Tubicles at the Multimedia
Communications Lab (KOM) at TU Darmstadt. However, the
number of nodes can easily be reduced without loss of func-
tionality. To optimally demonstrate tube.zero’s capabilities, a
representative testbed of at least four Tubicle nodes will be set
up at the conference venue. A laptop computer with attached
monitor will be used to display the user interface and interact
with the system.



During the demonstration, the following functionalities in
tube.zero will be part of our demonstration:

• Creation of the building map and assignment of node lo-
cations: The tube.zero system is adapted to the individual
environment by providing it with a map of the underlying
building and placing the nodes on this map.

• Status information retrieval: After the map has been
established, status and availability information about the
Tubicles can be retrieved and visualized on the user
interface.

• Job creation: By deploying firmware images to the se-
lected platforms in the Tubicle nodes, new functionalities
can be easily instantiated. The notion of a job comprises
the required firmware images as well as the time period
during which they are executed. The creation of a job
also demonstrates the functionality of our scheduling
component to avoid collisions.

• Log file retrieval: After successful execution of a job,
the log files can be retrieved from individual Tubicles for
analyses by the user.

In terms of the demonstrator’s size, all equipment (i.e., a
laptop computer that acts as the tube.zero server, a Wireless
LAN access point, and a number of Tubicles) should fit well on
a regular table of at least 1.6 meters width. The demonstration
setup is mostly self-contained, i.e. apart from the need for
at least one mains outlet to provide electricity to the server
and the Tubicles, no further infrastructure is required. The
demonstrator does not require significant adaptation to the
surroundings at the conference, and can thus be installed and
configured in less than an hour.

IV. CONCLUSION

We propose to demonstrate tube.zero, our deployment sup-
port system for Tubicle nodes. In contrast to existing systems,
tube.zero allows multiple users to experiment on the same
sensor network, sharing the network in both temporal and
spatial dimension. Its task scheduler automatically allocates
experiments the earliest available time slot. However, ded-
icated experimentation periods can also be defined by the
user. Logging data can be accessed both in real time during
the experiment, as well as downloading a complete archive
containing all log data after the job has finished. A connection
assessment functionality prevents users from unintentionally
operating on a partitioned network. A live demonstration of
our testbed management tool will be given, and the developers
will be available at the conference for a dialogue on the
possibilities of using tube.zero in other testbeds. In future we
plan to extend tube.zero to support dynamic job rescheduling
when other jobs are canceled, as well as preemption of jobs
for superusers.

REFERENCES

[1] G. Werner-Allen, P. Swieskowski, and M. Welsh, “MoteLab: A Wireless
Sensor Network Testbed,” in Proceedings of the 4th International Sym-
posium on Information Processing in Sensor Networks (IPSN), 2005, pp.
483–488.

[2] J. Beutel, M. Dyer, M. Hinz, L. Meier, and M. Ringwald, “Poster Ab-
stract: Next-Generation Prototyping of Sensor Networks,” in Proceedings
of the 2nd International Conference on Embedded Networked Sensor
Systems (SenSys), 2004, pp. 291–292.

[3] A. Reinhardt, M. Kropff, M. Hollick, and R. Steinmetz, “Designing
a Sensor Network Testbed for Smart Heterogeneous Applications,” in
Proceedings of the 3rd IEEE International Workshop on Practical Issues
in Building Sensor Network Applications (SenseApp), 2008, pp. 715–722.


