Demo: MARWIS - a Management Architecture for
Heterogeneous Wireless Sensor Networks

Gerald Wagenknecht, Markus Anwander, Torsten Braun
Institute for Computer Science and Applied Mathematics
University of Bern
Neubriickstrasse 10, CH-3012 Bern, Switzerland
wagen|anwander|braun @iam.unibe.ch

Abstract—In this paper we present a demonstration of a novel
management architecture for heterogeneous wireless sensor net-
works (WSNs) called MARWIS. The architecture supports com-
mon management tasks such as monitoring, (re)configuration,
and updating program code in a WSN. It considers specific
characteristics of sensor nodes. To handle large heterogeneous
WSNs MARWIS divides it into smaller sensor sub-networks,
which contain sensor nodes of the same type. A wireless mesh
network (WMN) operates as a backbone and builds the commu-
nication gateway between these sensor sub-networks. The mesh
nodes perform also the management tasks. The user controls the
management tasks using a web-based graphical user interface.

I. INTRODUCTION

A heterogeneous wireless sensor network (WSN) consists
of several different types of sensor nodes (SN), such as
TelosB [1], MSB [2], MICAz [3], and BTnodes [4]. Various
applications supporting different tasks, e.g., event detection,
localization, and monitoring, may run on these specialized sen-
sor nodes. In addition, new applications have to be deployed
as well as new configurations and software bug fixes have to
be performed during the network life time. In a network with
thousands of nodes, this is a very complex task and a general
management architecture is required.

In [5] we presented MARWIS, a Management Architecture
for Heterogeneous Wireless Sensor Networks, which supports
common management tasks such as monitoring the WSN,
configuration of the WSN, and distributing code updates
efficiently and automatically over the network. Furthermore,
MARWIS proposes the usage of a wireless mesh network
(WMN) as a backbone to build a heterogeneous WSN.

This paper complements [5] with a demonstration of MAR-
WIS and is structured as follows: Section II briefly presents the
management architecture MARWIS, including typical man-
agement scenarios, description of the structural elements, and
the management protocols. Section III describes details of
the implementation. Section IV explains practical information
about the demonstration.

II. MARWIS

A. Management Scenarios

In a WSN several different applications may run, e.g.,
event detection, localization, tracking, monitoring. For such
applications different types of sensor nodes are required. The
sensor nodes of the same type and in the same region can

be referred as a sensor sub-network. In general, existing
sensor node platforms have different radio modules. This in
combination with large distances, results in the inability to
communicate directly. Different sub-networks are not able to
communicate directly to each other due to different radio
modules and to large distance. This results in a heterogeneous
WSN built from several sub-networks. To interconnect such
a heterogeneous WSN, we propose a WMN as a backbone
network connecting the sub-networks. A sensor node plugged
into a serial interface (e.g., USB) to a mesh node works as a
gateway. The wireless mesh nodes communicate among each
other via IEEE 802.11. A possible scenario is shown in Figure

L.
user O
O
management

_—————— S

I
Internet

gateways

Fig. 1.
devices.

A possible scenario for heterogeneous WSNs with management

The use of a WMN as backbone has various advantages. The
main benefit is the ability to communicate with different types
of sensor nodes in several sensor sub-networks. In addition
to communication gateway functionality, mesh nodes perform
management tasks for the heterogeneous WSN. Moreover, the
use of a WMN has advantages by dividing a huge WSN into
smaller sensor sub-networks. Usually, a maximum hop count
of three to four hops from each sensor node to the gateway
can be achieved. This results in a better communication
performance with a significantly lower packet delay, jitter and
packet loss. Another advantage of using a WMN is that a
new sensor node platform can be easily integrated into the
heterogeneous WSN without any significant installation effort.
A sensor node has just to be plugged into a mesh node.

In a heterogeneous WSN with a large number of different
sensor nodes, a comprehensive management architecture is
required. In addition to the mesh nodes providing the man-
agement functionality, one or more management stations are
required. Due to constraints in memory and computational
power of the sensor nodes, the management functionalities are
shifted to the mesh nodes as well.

From the management point of view there are several tasks
required to manage a heterogeneous WSN. In general, the
tasks can be divided into three groups: (1) monitoring the
WSN and the sensor nodes, (2) (re)configuring the WSN and
the sensor nodes, and (3) updating and reprogramming the
sensor nodes.

The management tasks include visualization of all sensor
nodes in the various sub-networks at the management station.
Furthermore, status information about the sensor nodes has
to be monitored and displayed. This includes hardware fea-
tures (micro-controller, memory, transceiver), software details
(operating system versions, protocols, applications), dynamic
properties (battery, free memory), and position information.
The sensor node configuration includes, e.g., sensing intervals
of the sensors, running applications on the sensor nodes, or
network settings. Updating and reprogramming the sensor
nodes are very important tasks, which cannot be performed
manually in a large WSN. A mechanism to handle this
automatically and dynamically over the network is required,
including handling of incomplete, and failed updates.

B. Management Architecture

As shown in Figure 2, the architecture contains the follow-
ing structural elements: one or more management stations, sev-
eral mesh nodes as management nodes, sensor node gateways
plugged into a mesh node, and the different sensor nodes.

The management station is divided into two parts. It
consists of a user terminal to access a web-based graphical
user interface (GUI) to control the WSN and further ADAM,
a management system for WMNs [6], which includes a web
server. The user interface displays the WSN topology with the
mesh nodes including the subordinate sensor nodes and infor-
mation about the state of the sensor nodes. ADAM contains
a small Linux distribution including all required applications,
especially a HTTPS server to handle the requests and transmits
them to sensor nodes.

User Terminal Mesh Node Sensor Node

WSN Manager

[S—
Sensor WSN Program
Values Information Versions

" User Interface (Web Browser) ” Contiki

Management Station | ||| T
ADAM

MARW]S Server
@

WSN
Configurator

MARWIS Server

Application 1
Application 2
Sensor Node
Configurator
Code Updater

WSN
Monitor

Code Update
Manager

Code

WSN Update

WSN

Application N

Monitor | Configurator | yjanager Module Module Module Contiki Core

Fig. 2. Architecture of the MARWIS elements.

Modules that provide the management functionalities are
located on the mesh nodes. They consist of three databases
and the MARWIS server with three program modules, such

as the WSN Monitor, the WSN Configurator, and the Code
Update Manager. The databases store all information about
the sensor nodes and the WSN, such as topology (neighbors,
address), states of the sensor nodes (battery, memory), versions
of programs for the platforms, which can be installed on the
sensor nodes, and all data measured by the sensors.

On the sensor node, the management tasks are handled by
a SN agent. One such module consists of a SN monitor, a
SN Configurator, and a Code Updater. These modules can
be queried to respond with the current state, to perform
configuration tasks, or to update program code.

All communication in the network between the mesh nodes
as well as between the sensor nodes is done over TCP/IP.

C. Management Protocols

We consider monitoring, reconfiguration, and code updating
the most important tasks of our management architecture.

Monitoring of the WSN can be performed in two ways.
First, the management station explores parameters to be mon-
itored by querying the database on the mesh network. Alter-
natively, the user can query a selected sensor node directly.
The first variant is more energy-efficient, as no expensive
transmissions between sensor nodes are necessary, but the
responded data may not be up-to-date.

With the WSN configuration protocol the properties of the
sensor nodes as well as the network can be configured. The
procedure is similar to WSN monitoring, but a configuration
command is included in the request. As the SN configurator
has a universal interface and hides the sensor node type
specific characteristics, the configuration is independent of the
node type.

The code update protocol consists of three main subtasks.
A new image of an application or the operating system is
uploaded and stored in the database and distributed within
the WMN. The management station is notified about the
programs available. Finally, the image is transmitted to the
sensor node to be updated. On the sensor node, the update is
then performed and acknowledged. The database is updated
and, finally, the management station and the user is notified
about the success of the update.

III. IMPLEMENTATION

The management station consists of two devices, a mesh
node and a user terminal (e.g., PC). The management system
for WMNs is located on a mesh node and contains all
necessary programs and configurations to run the management
software. The user terminal only has to provide a web browser
for the user interface. It connects over HTTPS to the manage-
ment station.

The user interface visualizes the topology of the networks
and the information about the sensor nodes (Figure 3). By
clicking on the hosting mesh node (e.g. marwismnOl), the
connected sensor sub-network is shown. The graphics have
been created by Graphviz 2.12 [7] using the neighborhood
data from the database. By clicking on a sensor node (e.g,
sn01), the information about the senor node and the operating

system is shown. The state of the LEDs are displayed and the
installed sensors and their values are represented in a diagram
(Figure 4).

The management system for WMNs contains a small Linux
distribution (kernel 2.6.28.6) including all required applica-
tions, especially a HTTPS server for the connection with
the user interface. The modules handling the management
tasks and the communication between the mesh nodes are
implemented as a server program written in C using UDP/TCP
sockets (MARWIS server). The databases are managed with
sqlite3 [8].

The mesh nodes run the ADAM software, except for the
HTTPS server, as well as the modules handling the manage-
ment tasks. The Serial Line Interface Protocol (SLIP) is used
to communicate with the sensor nodes over a Linux TUN/TAP
interface. SLIP connects the IP layer of the mesh node directly
to the IP layer of the sensor node gateway.

YUl lmaa=y | OHNOS

Fig. 3. User interface: network overview.

We have evaluated several types of sensor nodes and se-
lected four types to build a heterogeneous WSN: TelosB [1],
MSB [2], MICAz [3], and BTnodes [4]. For the management
backbone, Alix 3D mesh nodes with two IEEE 802.11b/g
interfaces have been selected.

The sensor nodes run Contiki [9] as an operating system.
The code updater on the sensor node is part of Contiki and
responsible for the code replacement. Contiki works with
loadable modules to allow replacing applications. To start
and finish the application the functions _inif() and _fini()
are required and the application has to be compiled as ELF
(Executable and Linkable Format) [10] loadable. Standard
ELF or CELF (Compact ELF) is used. In contrast to ELF
files CELF files are represented with 8 and 16-bit data types,
which is adequate for 8-bit micro-controllers. Therefore, CELF
files are usually half the size of the corresponding ELF file,
but cannot be loaded by a standard ELF file handler. After
reception, the referenced variables are checked and functions
of the new application are linked and relocated by the Contiki
dynamic Link Editor (CLE) and the application is copied to
the ROM. Then the code updater starts the application using

the _init() function.

Fig. 4. User interface: sensor node overview.

IV. DEMONSTRATION

For the demonstration we will setup a heterogeneous WSN
with different types of sensor nodes, similar as shown in
Figure 1). We will show the management of such a network
using the MARWIS architecture. This includes monitoring and
configuration of the WSN and updating applications to the
sensor nodes. The required equipment for our demonstration
is listed below:

¢ One laptop and AC/DC power supplies
e 4 Alix 3D mesh nodes

e 3 TelosB sensor nodes

e 3 MSB sensor nodes

e 3 MicaZ sensor nodes

e 3 BTnodes sensor nodes

The requirements for the demonstration are:

e A table (60 cm x 80 cm)
o Wired Internet connection
o One Power outlet
o Poster space/stand

The setup time is about ten minutes.

REFERENCES

[1] TelosB: http://www.willow.co.uk. Last visit July 2011.

[2] MSB: http://cst.mi.fu-berlin.de/projects/ScatterWeb/ Last visit July 2011.

[3] MICAz: http://www.snm.ethz.ch/Projects/MicaZ. Last visit July 2011.

[4] BTNode: http://www.btnode.ethz.ch. Last visit July 2011.

[5] G. Wagenknecht, M. Anwander, T. Braun, T. Staub, J. Matheka, S. Mor-
genthaler: MARWIS: A Management Architecture for Heterogeneous
Wireless Sensor Networks, WWIC’08, Tampere, Finland, May’08S.

[6] T. Staub, S. Morgenthaler, D. Balsiger, P. K. Goode, T. Braun: ADAM:
Administration and Deployment of Adhoc Mesh Networks HotMESH'11,
Lucca, Italy, June 2011.

[7] Graphviz: A Graph Visualization Software http://www.graphviz.org. Last
visit July 2011.

[8] SQLite: http://www.sqlite.org. Last visit March 2011.

[9] A. Dunkels, B. Gronvall, T. Voigt: Contiki - a Lightweight and Flexible
Operating System for Tiny Networked Sensors. EmNetS’04, Tampa, FL,
USA, November 2004.

[10] ELF: Executable and Linkable Format.
kernel.de/appendix/ap05.pdf. Last visit July 2011.

http://www.linux-

